CARBON LIMITS

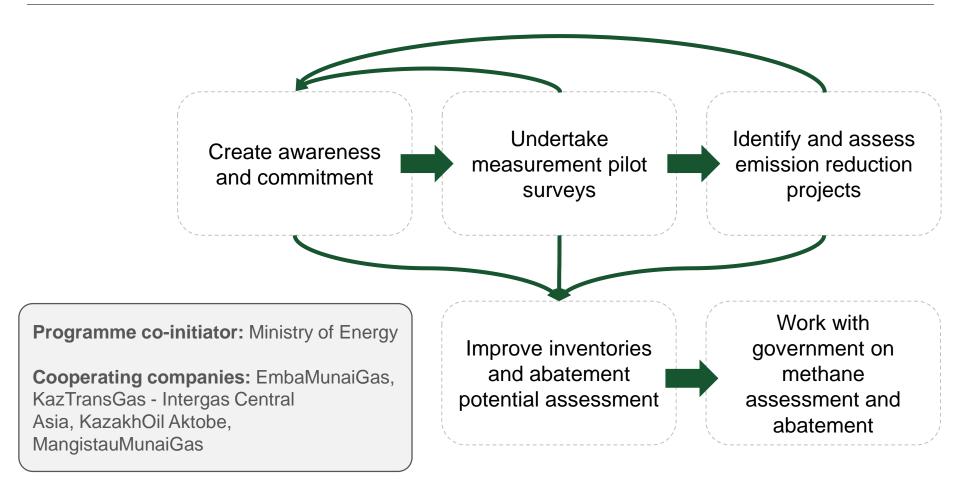
Methane emissions in Kazakhstanfrom measurements to inventory improvements

Stephanie Saunier

Project financed by

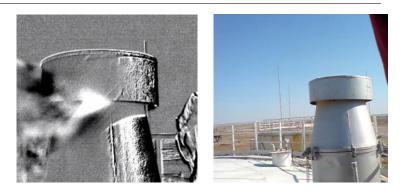
Introduction on Kazakhstan

- Proven crude oil reserves: 30 thousand million barrels.
- Second largest reserves in Eurasia, and the twelfth largest in the world, just behind the United States.
- Production 1.70 million bbl/d in 2014
- Over the past decade, natural gas production has increased by 50%, up to 19.3 bcm in 2014.
- The volume of international gas transit through Kazakhstan 78.6 bcm


Kazakhstan is a regional leader on climate mitigation.

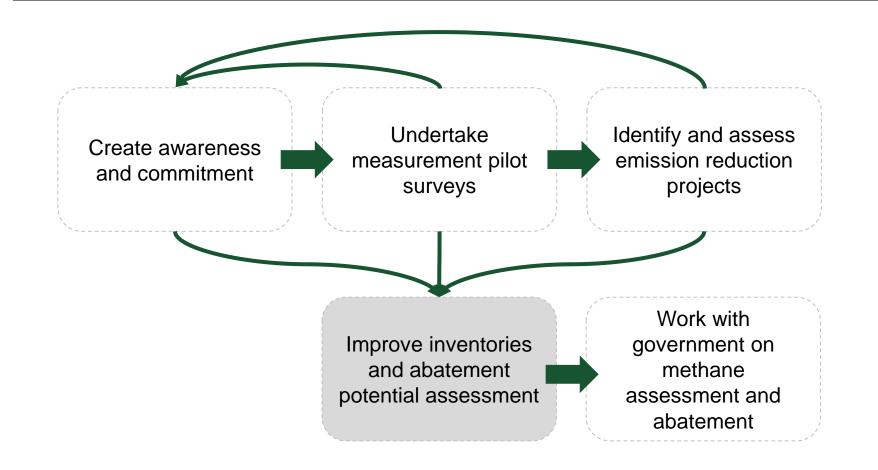
In January **2013**, the country launched an **ETS** covering CO2 emissions from the energy sector (including oil and gas) mining and chemical industry.

Methane emissions reduction projects can be used as **offset under the Kazakh ETS**


Methane program in Kazakhstan

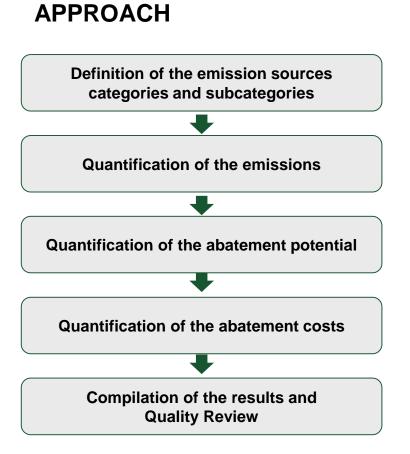
Overview – Key objectives

Methane program in Kazakhstan 2015 Activities

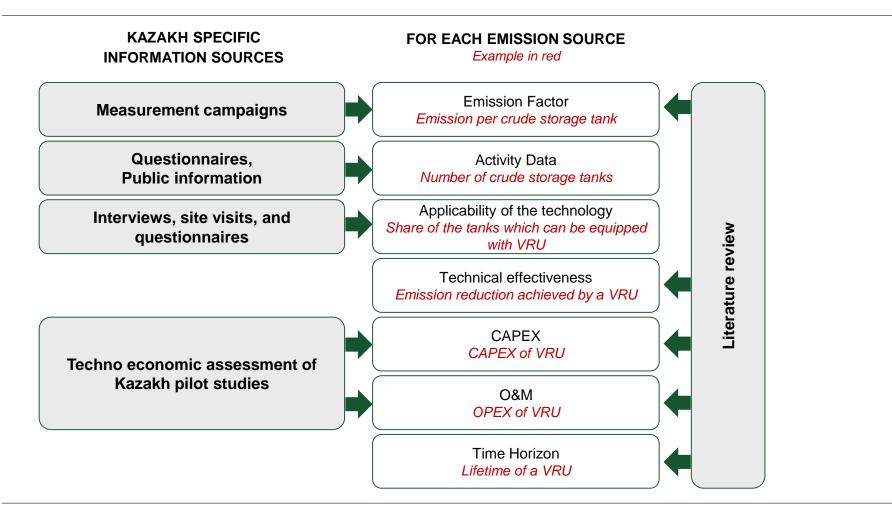

- Workshops on methane emissions in the oil and gas sector.
- LDAR at three upstream facilities in Kazakhstan (September 2015)
- LDAR on natural gas transmission and distribution (November 2015)
- Identification and detailed assessment of methane
 emissions reduction projects

Methane program in Kazakhstan

Overview – Key objectives

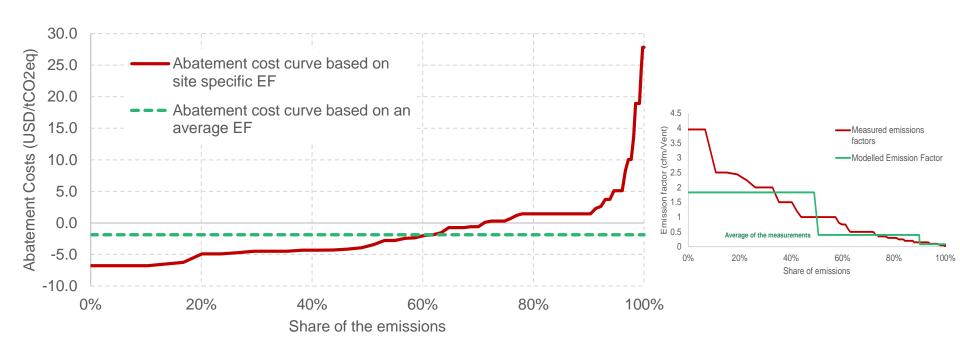


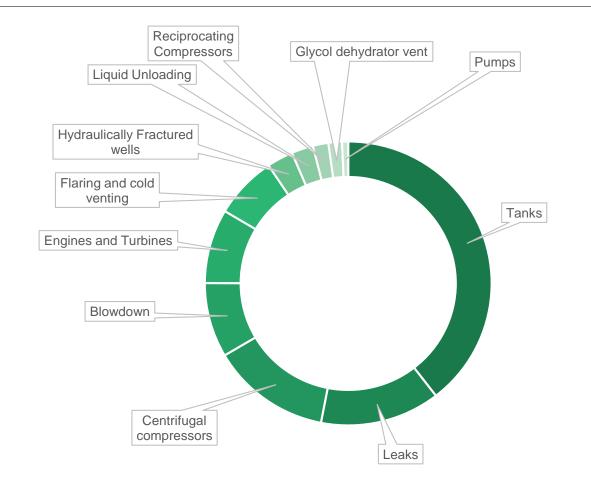
Inventory and abatement potential assessment Overview


KEY OBJECTIVES

The work performed aims at providing estimates of:

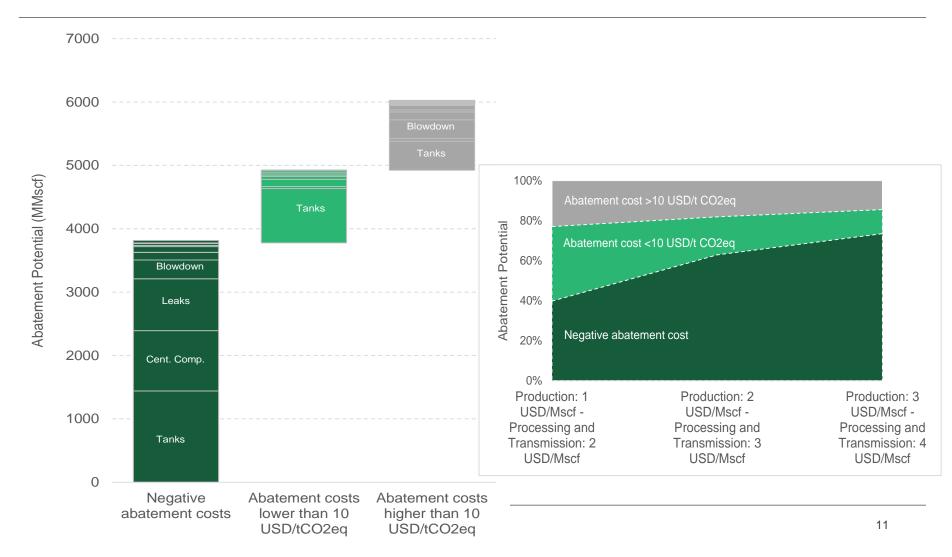
- Methane emissions from oil and gas system in Kazakhstan
- Methane abatement potential and costs
- Allow Kazakh companies and authorities to identify the most attractive abatement opportunities
- Contribute to an increased knowledge on the magnitude of emissions and on the abatement potential outside North America


Information sources


All assumptions....

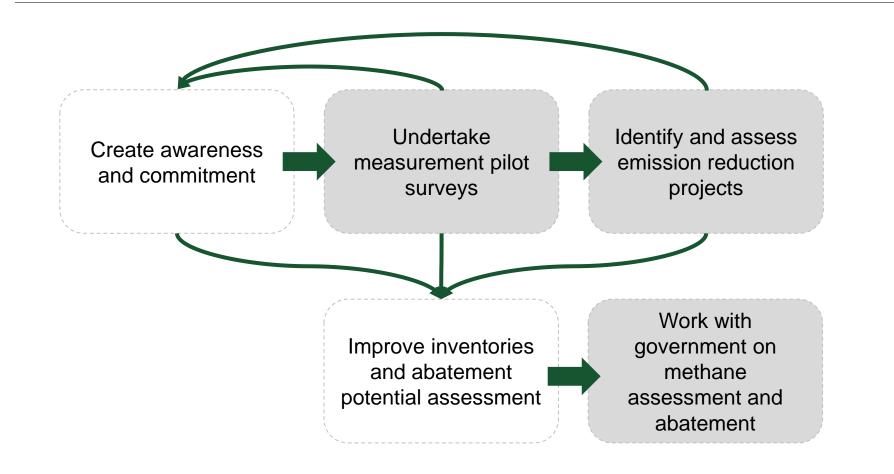
	A still it i			Applicability	Annling		Abatement efficiency -	
Category	Activity Factor	Activ		Applicability of			Abatemen	t eniciency -
Flaring-Production	26045			Central Emission	Low Emission	High Emission		
Cold-Venting	69		Category	factor	factor		Emission factor -Unit	Emission factor - sour
Leaks_Product			Flaring-Production	2%	1%	5%	%	Source 9
Leaks_Process			Cold-Venting	100%	100%	100%	%	NA
Leaks_Compre Category	-	Miti	Leaks_Production	0.00	0.00	0.00	MMscf/boe	Source 2 and 10
Liquid storage Leaks_Production		LDA	Leaks_Processing	0.190%	0.076%	0.380%	% of the Throughput	Source 2, 29 and 10
Liquid storage Leaks_Processing		LDA	Leaks_Compressor Stations	0.76	0.25	8.31	MMscf/equipment/year	Source 2 and 10
Centrifugal Cor Leaks_Compressor Stations		LDA	Liquid storage tanks - non mitigated	3.50	1.00	9.00	MMscf of Ch4/tank/year	Source 2 and 10
Centrif ugal Cor Liquid storage tanks - non mitigated Ins		Insta	Liquid storage tanks with VRU	0.88	0.25	2.25	MMscf of Ch4/tank/year	Source 2 and 10
		Rec	Centrifugal Compressors with wet seal - upstream	6.00	4.00	17.58	MMscf/compressor/year	Source 23, 2 and 17
Small Gas Engi Centrifugal Compressors with wet seal - Transmission and refi Rec				6.00	4.00	17.58	MMscf/compressor/year	Source 23, 2 and 17
Reciprocating Small Gas Engines and Turbine		Insta	Centrifugal Compressors with dry seal	1.50	0.90	3.00	MMscf/compressor/year	Source 23, 2 and 17
Reciprocating Reciprocating Compressors upstream		Earl	Small Gas Engines and Turbine	1%	1%	2%	%	Source 18 and 28
Reciprocating (Reciprocating Compressors Refineries		Earl	Reciprocating Compressors upstream	0.42	0.09	1.93	MMscf/year	Source 2, 10 and 23
Liquid_Unloadir Reciprocating Compressors Transmissions		Earl	Reciprocating Compressors Refineries	0.64	0.16	5.91	MMscf/year	Source 2, 10 and 23
Hydraulically Fi		Insta	Reciprocating Compressors Transmissions	1.45	0.22	10.00	MMscf/year	Source 2, 10 and 23
Hydraulically F Hydraulically Fractured wells mitigated		Red	Liquid_Unloading	0.06	0.02	0.11	MMscf/event	Source 12
Dehydrator Ve Dehydrator Vent Processing non mitigated		Opti Opti	Hydraulically Fractured w ells mitigated	0.85	0.41	10.77	MMscf/event	Source 20 and 21
Natural Gas Driven Chemical Injection Rumos		Rep	Hydraulically Fractured wells non mitigated	0.08	0.04	1.08	MMscf/event	Source 20 and 21
KimrayPumps (Glycol)		Rep	Dehydrator Vent Processing non mitigated	0.00021	0.00007	0.00044	MMscf CH4/MMScf throughput	Source 23 and 10
Blow down, vessels, nonmitigated		Con	Dehydrator Vent Processing mitigated	0.00007	0.00002	0.00014	MMscf CH4/MMScf throughput	Source 23 and 10
Natural Gas Dr Blow dow n. PRV. nonmitigated		Con	Dehydrator Vent transmission non mitigated	0.00009	0.00003	0.00020	MMscf CH4/MMScf throughput	Source 23 and 10
KimrayPumps (Blow dow n_routine_compressor_nonmitigated Ins		Insta	Dehydrator Vent transmission mitigated	0.00003	0.00001	0.00007	MMscf CH4/MMScf throughput	Source 23 and 10
Blow dow n_ve		Insta	Natural Gas Driven Chemical Injection Pumps	0.29	0.11	0.67	MMcfmethane/year	Source 10, 27
Blow dow n_PR Blow dow n_GPP_nonmitigated Ins Blow dow n_rou		Insta	KimrayPumps (Glycol)	0.00106	0.00034	0.00228	MMcfmethane/MMScf	Source 23, 27
			Blow dow n_vessels_nonmitigated	0.00	0.00	0.00	MMscf/Equipment count	Source 24
		Pipe		0.00	0.00	0.00	MMscf/Equipment count	Source 24
Blow dow n_Gr_ Blow dow n compressor station nonmitigated	56	Insta	Blow dow n_routine_compressor_nonmitigated	0.00	0.00	0.01	MMscf/Equipment count	Source 24
Blow dow n_compressor_station_nonmitigated	6417		Blow dow n_start_compressor_nonmitigated	0.01	0.01	0.01	MMscf/Equipment count	Source 24
Blow dow n_natural_gas_trunklines_normalgated	9625		Blow dow n_GPP_nonmitigated	4.06	1.55	10.64	MMscf/GPP	Source 1 and 24
Large Gas Engines and Turbine non mitigated	66999		Blow dow n_compressor_station_nonmitigated	8.83	0.64	11.65	MMscf/Compressors stations	Source 1 and 24
Large Gas Engines and Turbine mitigated	16750		Blow dow n_natural_gas_trunklines_nonmitigated	0.06	0.01	0.08	MMscf/km	Source 25
			Blow dow n_natural_gas_trunklines_mitigated	0.01	0.00	0.01	MMscf/km	Source 25
			Large Gas Engines and Turbine non mitigated	1%	1%	2%	%	Source 18 and 28
			Large Gas Engines and Turbine mitigated	1%	0%	2%	%	Source 18 and 28

Abatement costs.... It is REALLY site dependent!



Main results: Split of emissions by emissions categories

Main results:


Abatement potential and abatement costs estimates

A few caveat and limitations

- The measurement performed does not allow a statistical utilization of the emission factors gathered
- Some EF were not measured during the measurement campaign, e.g. Liquid unloading
- A few emission sources have been excluded due to the lack of information available

Methane program in Kazakhstan 2016 plan

A few final thoughts....

- Understanding emissions and **mitigating** them goes hand in hand!
- Current published international estimates are uncertain.... But these estimates can be improved.
- Current practices vary highly between countries So does methane emissions!
- **Collaboration** was key Huge thanks to everybody in KMG !